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Abstract—Buased on the boundary element equation approach for crack opening displacements, in
equation of the perturbation type is derived giving an explicit relation between the crack front
variation and the resulting vartation in the stress intensity factor. By using this equation. the crack
front advance can be predicted at each step of cruck growth while ensuring that the fracture criterion
is satisfied for the new cruck geometry. As an example, the problem of the growth under @ Dugdale-
type model for cracks of elliptical and circular shapes with umform and linear variation of teasile
loads is solved and the numerical results are discussed.

INTRODUCTION

For three-dimenstonal crack problems, most anulytical efforts have been concerned with
stationary cracks, where the geometry of the crack and the loading conditions are given,
Various analytical and numerical methods have been developed to solve such stationary
crack problems to determine the crack opening displacement and the stress intensity factor
along the crack front.

However, another class of problems, crack growth, although of practical interest in
many ficlds, has not been addressed in o systematic way. The stationary crack problems
belong to the tradittonal direct problems of mechanics in which the geometry is known o
priori. Crack growth problems on the other hand have the feature that the geometry of the
crack s not given and must be determined through the solution procedure. The only
requirenment for the determination ol the new crack front after growth is that the fracture
criterton, which is dircetly related to the stress intensity tfactor, be satisfied.

This class of problems was addressed previously by using an iteration approach
(Mastrojannis ¢z al., 1980 ; Lee and Keer, 1986, and others). At each step the cricck advance
was determined by adopting an ad hoe fatigue crack growth law analogous to the Paris
law. The iteration continued until an equilibrium crack f{ront was tound. This method,
although pragmatic, is not satisfuctory for the following reason: although the fracture
criterion 1s satisfied for the final geometry of the crack, it may be violated during the
ieration procedure and hence the scarching process may contain error and not represent
the actual growth process of the crack and the convergence in general is not guaranteed.
Recent examples of applications of this approach appear in the work of Gao and Rice
(1989) and Fares (1989).

In recent years Rice (1985, 1987) and Gao and Rice (1986, 1987) have developed a
theory for calculating directly the first order variation in crack opening displucement and
stress intensity fuctor due to small changes in crack geometry. Bower and Ortiz (1990)
extended this first order perturbation scheme to arbitrarily large variations of crack geom-
ctries. By repeated small perturbations applied to some initial geometry. results for cracks
of arbitrary shapes were derived. A number of crack growth problems of interest have
been solved by this method (Bower and Ortiz, 1990 Li and Kceer, 1992). However, there
are severe restrictions to the application of this approach to general crack growth problems.
Duc to the strong singularity contained in the integral in the basic equations. the method
can only be applied to cracks in a homogencous medium with uniform loading conditions.

For solving general crack growth problems. it is necessary to develop equations to
which a perturbation approach can give an explicit relation between the crack front variation
and the resulting changes in the stress intensity factor. Then. it becomes possible to
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determine the crack front advance which will result in a given vanation of stress intensity
factor such that the fracture criterion is satisfied at cach new cruck front.

[n this paper it is shown how to derive such equations from the boundary integral
equation, which is onginally developed to solve for the crack opening displucement and the
stress intensity factor and in the present analysis is used to solve crack growth problems.
[t 15 interesting to note that the concept of deriving the relation between the crack growth
and the resulting changes in the stress intensity factor from the corresponding integral
equation first appeared in the papers of Nemut-Nusser ¢f ol (1978) and Keer er af. (1978)
for two-dimensional crack growth problems related to the stability ot interacting cracks.
The quantities in the integral equations are viewed as the functions of the crack lengths. By
differentiation. the equation for the derivatives of the stress intensity fuctor with respect to
the crack lengths are obtamed and the problem ot the stability ot the crack growth 15
addressed. For the three-dimensional problems considered in this paper. the coetlicients. as
well as the solution of the boundary integral equation. depend upon the shape of the crack.
By differentiation with respect to the posttions of the nodal points on the crack tront. a
perturbation type relation can be derived between the nodal point displacement and the
variation of the stress intensity factor,

Asan application of this method. the growth of the vield zone of a Dugdale-type crack
of circular shape under hincar variation of load as well as of elliptical shapes under uniform
Joad are solved.

Formudation

Consider planar cracks subjected to tensile forees which induce a mode [ stress intensity
factor around the crack front. For stationary crack problems with the crack opening
displacement A as the unknown function, a suitable boundary integral cquation, detined
on the crack faces, can be established in the form

~

Ny, vy deiy) = - plag), (h

o

where Ay, vy s the kernel function and pis the normal pressure on the crack fuces. After
putting cyqn (1) into a discrete form by a proper numerical scheme, it is reduced to the
following sct of algebraic equations:

H A= —p. =12, N, (

i

where p, is the pressure at the collocation point x5 #H,, = )\ Kix, o)w(x) dA. Here, &) is
the jth subdomain (clement) of the crack fuces and w(x) is the weight function which
describes the variation of A within cach element

el

Au(x) = Aiw (). {:

Two types of clements are distinguished as follows @ the inside element and the crack
front element; the latter has an edge or vertex that lies on the crack tront. After solving
Ari from eqn (2) the stress intensity factor K is caleulated from the crack opening dis-
placement of the crack front elements by the known relation:

(1 —=v)
Aul(x,) = Adw(x,) = (’ K /e, ()
N 27'[}(

where ¢, is the distance of point x, from the crack front. To obtain an accurate result of
the stress intensity factor the asymptotic behavior of Au near the crack front as shown by
the right side of eqn (4) should be incorporated into the expression for the weight function.

With a continuous increase in the applied load. the stress intensity factor at some
points along the crack front will eventually reach a critical value. the fracture toughness of
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the material, such that any further increment in the load will force the crack to grow. The
change of the crack geometry after growth is specified by the crack front displacement.
which will cause a perturbation to eqn (1) with the form:

) JK(.\'. x)Au(x)dA(x) = —Ip(xy). (3

Now the same discretization scheme which 1s applied to eqn (1) to obtain eqn (2) is used.
The crack face is divided into V elements and the function of the crack tace opening
displacement is approximated by the piecewise function Aduw(x). j=1.2...... V. Equation
(3} is then reduced to the following discrete form:

v
Z d[At?,f [\'(.\‘..\',)w(.\')dAjl = ~dp(x). i=12.... N (6)
i=1 >

or
H,0(86) +0H A, = —dp. i=1.2.... N (7)

where higher order terms such as 0/7,0A4, are neglected.

For a given approximation scheme the crack front is totally determined by the position
of nodal points along the crack front. Conscquently for crack growth problems, the variation
of the crack geometry during crack growth is specilied by the displacements ot the nodes
on the crack front, In the sequel da, will be used to denote the displacement of the jth front
node along the direction normal to the crack front. Equation (7) can then be written as

L o, . )
H,0(AG) + -5 A da,, = —op,, =12 ..., . (8)
(¢

m

In the above equation the summation over j is from | to N and the summation over m is
from | to M, where M is the total number of frontal nodes. The term (CH,, dda,,)da,, is
calculated as

Hy, _CHy o iH, o, i, o
S, = o 5x, Oy, = | S et 5, | da,,
&a, " X, v, " dx, " dy, " '

where x,, = (x,,. v,,) is the position vector of the mth crack front node and n,, = (n,,,. n.,,)
is the normal to the crack front at that point. When the crack front is approximated by a
polygon, the normal to the crack front at the nth node is taken as the normal to a parabola

fitting through the mth node and the two adjacent nodes. From eqn (9) the operator ¢/(da,,
will be understood in the sequel us

¢ ¢ + ¢ (10)
PSRN (Y Mo 5 -
L"‘)“m "‘.m {, 'm

It should be pointed out that for crack front element the variation of A, the area of
the element has to be taken into account when calculating ¢H,/éda,,. The calculation of H,;
usually involves the evaluation of three different integrals over the jth element whose nodes
will be denoted by x,. x, and x,. The calculation of ¢H,/¢da,, for these integrals is discussed
next.

When i # j, i.e. when the collocation point x; is not in the jth element. 4, is usually
calculated by a two-dimensional numerical integration scheme, which has the general form:
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¥
H,= | Kl.xIw(x)dd = A(x..x,.x,) Z B K(x.. x)wix;). (rn

FAY ko= f

where A s the area of the element and B, are the integration weights. The integration points
are determined from the nodal points x . x, and x, of the element through a lincar relation.
X, = Litx,. x,. x,). The collocation points are similarly related to the nodes of the th
element through x, = Cix,. x,. x,).

The derivative of H,, with respect to du,, has the form

B, {I\'m, ) [‘M"'*) 4t (QL"]+ wix,)

Coa,, cxe Cda,

i

AY
cr— = A(X,.x,.n,) v
cod,, T

Y B K(v.vowi(x), (12

N

l:f‘l\'(.\‘k..\j,) CLy OK(v.x) CC T CAlv v
X S .o+ R . + Ll T
X cod,, X, cod,, cod,, P
where the term Cw(x,) ¢oa,, is produced by the change of distance between the integration
point v, and the crack front, while x; remains unchanged. It appears that only when the
crack front node x,, coincides with one of the three nodes . v, v, that the terms associated
with ¢ L Coa,, and CA(x,, v, v,) Odw,, exist. The same argument applics to 0C, Coa,,,.
When 7 =4, i.c. when the collocation point x, lics within the jth clement, where the
integration is to be carried out. then the integral is singular and s caleulated by the sum ot
the tollowing three integrals

f, = J Ky, u)w(adod = J { Kiv,x) =K' (x ) (wivyda
\ v .

" -~

+P.V. J Rv )y —wixp)dad + E Py | Koy ded, (1)

Al A

’ oY,

where K is the singular part of the keenel function ; PV oand F.P.indicate Cauchy principal
value integral and finite part integrad, respectively, The two-dimensional principal valuce
integral is evaluated by a numerical formula, such as the one given by Theocuris ¢f af.
(1980):

Ty, v C e 0
nv.J M) by, ‘ “r O
A, A

r- re

\

{ N ;
-y A(i,[f{l s ,'1,\1/(R(().,)M,U,):l+u(0, ) In Rm,);-.
IR A

(14

where (v, v) = rK(v, x)De(x) — ()]s A, and B, are the weights and pg the abscissac: r
is the distance between the integration points and the collocation point, and Ris the distance
of v, from the boundary of the clement. The quantity 8, is usually related to the positions
of the nodes of the clement. For inside clements, the cruck tront advance will affect the
variation of the above Cauchy principal value integral only through the variation of w(v)
and wivx,). and the caleulation ol the derivatives of the mtegral with respect to da s
straightforward. However, crack front elements which have one or two nodes on the crack
front must be treated with care. When differentiating the above cquation with respect 1o
Sar,,,. all the cffects of the displacement of the nodal points on the position of x, und on R
and 0, directly as well as through the variation of x,. in addition to the vartation of w{x).
should be taken into account, which makes the resulting formulae complicated. Due to
their length and complexity they are not included in this paper.

The finite part integral generally has a closed form (Lin and Keer. 1987), which depends
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on the position of the nodes of the element as well as that of the collocation point:
F.P.w(.\',)f K'(x.x)dd = w(x)F(xX,. X, X,. X). (135)
‘\I

The differentiation of the finite part integral with respect to positions of the collocation
points as well as the nodal points is performed by differentiating the right-hand side of the
equation. The resulting formulae are given in the Appendix.

For the application to crack growth problems. it is desired to obtain an equation which
gives a relation between the crack front advance and the resulting changes in the stress
intensity factor. By performing matrix manipulation and incorporating eqn (4) this equation
is readily derived from eqn (8) as:

A, 0a,=0K, i=12...., M, (16)

where M is the total number of the crack front elements. In deriving eqn (16). dp is taken
to be zero in eqn (8). Hence 0K in the above equation is solely produced by the crack
advance. The variation of stress tntensity factor caused by the variation of the load is solved
from eqn (8) by letting da = 0.

Equation (16) can be used in a variety of ways. The resulting changes in stress intensity
factor duc to a given crack front advance da can be calculated. or conversely, the unknown
da which results in a required variation in stress intensity factor, 8K, can be determined.
Equation (16) can also be employed to solve problems having mixed unknowns, t.c. at some
points on the crack front oK is prescribed and at the remaining points da is specitied, such
as are encountered in the problem of crack growth between bitrriers or obstacles.

Equation (16) 1s solved by incorporating the fracture criterion K € K as an incquality
boundary condition on the unknowns.

IFor crack front elements:

OR =0, du#0 ifK=RK,:
SK#0, du=0 ifK <K, (17

where K is the local fracture toughness of the material.

For a general triangulation mesh scheme, the total number of crack front elements
exceeds the number of crack front nodes. In such cases, eqn (16) is an overdetermined
system of algebraic equations, which is solved as a standard least squares problem as
follows: find the solution d¢ which minimizes the normal of the residual: || 4da—0K|
(Bertero ef al., 1985).

It is possible to prescribe only 0K for those crack front elements which have an edge
on the crack front, in order to keep the number of equations equal to the number of the
unknown cruack front node displuacements. However, it is observed in such cases that a small
difference in the prescribed 0K may result in a large fluctuation in the solution da, which
reflects the unstable character generally associated with the solution of inverse problems,
in which the geometry of a problem is to be determined from known information on
the stress field. By prescribing 0K for all crack front elements, more restrictions are
imposcd on the unknown crack front node advance, which makes the resulting solution
stable.

With the solved unknowns da. d(A@) and dK from ¢qns (8) and (16) the new crack
front is determined and the crack opening displacement Aw and the stress intensity factor
K are updated for the new crack configuration to which the above analysis can then be
repeated. Since only first order perturbation is considered in egn (8). each step of the crack
advance has to be kept sufficiently small to ensure the accuracy of the result. However, as
the perturbation can be repeated indefinitely by successively updating the crack geometry
and the corresponding crack opening displacement and the stress intensity factor, this
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method can be used to analyse arbitranly large deformations of the crack geometry. which
simulates the crack growth process.

In the analysis eqn (2) is used to calculate the crack opening displacement Aa and the
stress intensity factor K for the initial crack geometry. After a number of perturbation steps
eqn (2) may be used again to calculate A and K ot the perturbed crack in order to prevent
the possible accumulation of errors in the perturbation process.

The solution procedure is described here only for plane crack growth problems with
mode 1 stress intensity fuctor for the illustration of this method. Since the kernel function
and the wetght function are not specified in the equations. the ones derived here ure general
in form and suitable for various mode 1 crack problems. For mixed mode problems. since
the integral equations are well established (Lee er al.. 1987 Hanson er ul., 1989). the
perturbation equation can be derived by the same procedure although the resulting formulae
will be more complicated. The only difference between the mixed mode crack and the mode
[ crack 1s the moditication of egn (17) to the following

oL =0, ou# 0 WE=FL;
OE #0. oa=0 IWE < E.. (18)

where o £ 1s the variation of energy release rate which can be evaluated from the varation
of stress intensity factors, For first order perturbation analysis u inear relation between o8
and the variation of stress intensity factors 0A . oK, and dK},, can be derived, which s
incorporated with the lincar cquation (16) to determine the unknown crack front node
advance.

APPLICATIONS

In this section the perturbation method s dlustrated by caleulating the yield zone
growth ot a Dugdale-type crack under an increasing tensile load. The boundary conditions
apphied here ure related for simplicity to the tensile yield stress alone rather than the
maximum shear stress (Keer and Mura, 1965). The Dugdale model was proposed to deal
with the problem of infinite stress at the erack tip involved in the clastic solution. Tnciden-
tally, this stress singularity does not present any difliculty tor the solution of etther the
boundary clement equation, eqn (2), or the perturbation equation (8), derived from it for
the unknown function in these equations is the crack opening displacement. which is finite
at the edge of the crack.

In polar coordinates the initial planar crack shape is specified by r = R (), which
upon loading is extended by a yield zone with front r = R.({)). The loading state for the
arca r < R, (0) is assumed to arise from a combination of a uniform tensile stress o, and a
stress having a lincar variation. o v/a. 1.¢. p = o, +0,x/a. where « 18 a characteristic length
of the crack geometry. The load in the yield zone R () € r < R,(0) is the sum of the loads
oo axa and the yield stress o, 0 p = —g, +0,+0,x’a. The fracture criterion at the
fictitious crack front r = R.(6) is that the stress intensity factor should be equal to zero,
KN =0,

For a penny-shaped crack with R, = a. R, = b under uniform load (g, = 0). there
exists an analytical solution (Tada er «f., 1985) and the yicld zone is specificd by the

cquation
R':/I-“‘?. (19)
R, a5

To our knowledge there is still not an established method to determine the yicld zone of
Dugdale type cracks for general crack shapes and loading conditions.
The circular crack of unit radius: R, = 1 subjected to loads having a linear variation
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as specified above with ¢ = | is considered first. The fictitious crack front is no longer
circular and will be computed by the perturbation procedure described in this paper.

The perturbation is started from an initial circular fictitious crack front R.(#) = Cfor
which the stress intensity fuctor A{#) # 0. The crack front displacement du at each step is
determined by solving eqn (16) where JK, is specified as —xK. The value for x is chosen
such that the maximum node displacement at each step is less than 0.03 to ensure the
accuracy. After several perturbation steps. the stress intensity factor is reduced to such a
level that ttis approximately zero, considering the error associated with the solution of the
original boundary element equation. In the present computation A < 0.008 is considered
sufficiently small to be considered zero. At this stage the fictitious crack front s considered
10 have been found.

At the next stage. the uniform toad o, is allowed to increase. forcing the yield zone to
grow. Suppose that the stress intensity factor produced solely by g, without other loads
present is K. which can be solved from eqn (2). The increment Ao, in the uniform load
will cause the stress intensity factor to increase by the amount KyAe,/a,. The advance of
the crack front de caused by the increment of the uniform load is solved from cyn (16) by
prescribing 0K as — A,As, /o, thus ensuring that the stress intensity factor remains
unchanged after the growth. At each step the increment in the uniform load A, is chosen
such that the maximum node displacement s less than 0.03.

Numcrical results for two different lincar foud magaitudes o, are displayed in Figs -
3. where the uniform load o, and the lincar variation load ¢, is normalized by the yield
stress ay, which is of unit magnitude. In Fig. 3 the curve representing the analytical solution
is obtained from eqn (19). 1t can be scen that the numerical results (o, = 0) agree well with
the known analytical solution,

In Figs Fand 2 (also in Figs 4 and 3), where becituse ot the symmetry only the upper
half' of the crack geometry is shown, the thicker solid line represents the real erack front while
the other curves give the lictitious crack frontat different stages of growth, corresponding to
an increasing uniform stress fevel. Figure (3) shows the growth of the yield zone width at
D=0((x>0, =0 and 0 =n(x <0, r=0) lordiffecrent magnitudes of lincar variation
of stress fevels, It is observed from these figures that due to the lincar variation of stress
the yicld zone at ¢ = 0 grows much faster than that at ¢ = z. This phenomenon becomes
more sigaificant as the magnitude of the linear stress variation o increases.

The second case to be considered is the growth of the yield zone of a crack initially of
elliptical shape subjected to the uniform tensile load only, ie. g, = 0. Considering the
distribution of stress intensity factor around an elliptical crack, the growth of a yield zone

o1/ oy =0.05

1 /
/
n . : S T £
2 -1 [ 1

== Crack front

T Yield zone fronts comresponding to load levevis  Oofoy = 0.335, 0.535. 0.639, 0.698.
0.743, 0.771, 0.793, 0.811, 0.822, 0.831, 0.839 and 0.843 respectively

Fig. 1. Growth of yicld zone of Dugdale-type crack subjected to lincar variation load.
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G/ oy =01

Y 2
1 4
o Y
-2 2 3
X

=== Crack front
Yield zone fronts corresponding to load levels og/cy = 0.363, 0.526, 0.610, 0.661,

0.697, 0.719, 0.736, 0.746, 0.753 and 0.758 respectively

Fig. 2. Growth of vield zone of Dugdale-type crack subjected to linear variation toad

should eventually be almost circular. The real crack front is speciticd by v = a cos
yv=bsin 0 and the yicld zone is to be deternined. The perturbation procedure to solve
this problent is stmdar to that for the fiest case and begins from « fictitious crack front:
Xo= (g ko) cos Doy = (b4e) sin 0 Atter the actual ictiious crack front is found for the
titial uniform tensile foad level, o, is increased. The results of the corresponding growth
ol the yield zone are presented in Figs 4 8, where the major semi-axis a s cqual to 1.
Figures 4 and 3 show the gradual advance of the yield zone tront accompanying the
increase of the uniform load for crucks ol elliptical shape with the ratio of minor to major
semi-axts ba cqual to 0.8 and 0.6, respectively. The ratio of the maximum to minimum
stress intensity fictor along the elfiptical crack front increases with the decrease ol the ratio
hra. Numerical results displiy the feature that the fictiious crack becomes more circular as
can be seen in Figs 4-8. By comparing Figs 6, 7 and 8, 1ts clear that when the ratio hu

becomes smaller the difference between the width of the yicld zone at 0 =0 and 72 s

9 gj/oy=0.05,86=0

o oyfoy=0.0

Analytical Solution

Zone Widih

1 a gy/gy=0.05,0=n

Yield

° g/oy=0.1,8=n

o 0/ay=0.1,8=0

Tensile Load Co/ Oy

Fig. 3. Growth ol vield zone width vs increasing tensile foad.
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Y 4
34
2 -
1
0 T T T T
-4 -3 -2 -1 0 1 2 3 4
— Crack front X
———  Yield zone fronts comresponding to load levels gg/oy = 0.400, 0.720, 0.832,

0.889, 0.919, 0.940, 0.953, 0.963, 0.969 and 0.975 respectively
--------- Ellipses that coincide with yield zonc fronts at 8=0, n/2, « and 3n/2

Fig. 4. Growth of yield zone of elliptical Dugdale-type crack.

greater. The ditference also increases with the growth of the yield zone or the build up of
the uniform tensile load. (The two curves in Figs 6-8 scem to merge as @, increiscs.,
However, the difference between the two curves at a certain uniform load level is actually
increasing.)

The dashed lines in Figs 4 and S represent the cllipses that coincide with the fictitious
crack fronts at ¢ = 0, 7/2, r and 37/2. It is noted that the difference between the lictitious
crack front and the corresponding cllipse is very small compared o the size of the yield
zone. This observation raises the question of whether the fictitious crack front of clliptical
Dugdale model cracks is still of clliptical shape. Although this point cannot be judged by
the results of numerical analysis because there are unavoidable small errors, it can be
concluded from the results that an cllipse that gradually approaches a circle is at least a
good approximation of, if not the exact, shupe of the fictitious crack front of elliptical
Dugdale cracks.

It should be pointed out here that the prescribed load condition in the yield zone

= Crack front X
——— Yicid zone fronts corresponding to load levels og/oy = 0.421, 0.742, 0.847,

0.899, 0.929, 0.947, 0.959, 0.967. 0.973 and 0.977 respectively
---------- Ellipses that coincide with yield zone fronts at 8=0, n/2, x and 3n/2

Fig. 5. Growth of yicld zone of elliptical Dugdale-type crack.

SAS 29:22-E
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Elliptical Crack b/ a = 08

3
<
2
z 2 4
b4
e
S
N
- :
z 8=0
P
1 -
0 = 1/2
o T v T M T v
0.2 0.4 0.6 0.8 1.0
Tensile Load 0o/ Oy

Fig. 6. Growth of vield zone width vs mcreasing tensile load.,

implies the yicld condition a. = a,. Although this simple model has been adopted in many
works done so fur on three-dimensional Dugdale-type crack problems, a more strict analysis
ot this kind of problem should incorporate some established yicld condition for the plastic
zonge such as the Tresca yield condition (Keer and Mura, 1965). Their results show that, in
contrast to egn (19), the relation between the width of the yield zone and the applied load
depends on the Poisson’s ratio of the material. Since the goal of the present paper was the
demonstration of a direct method tor calculation of crack growth, such cases are reserved
for future investigations.

Elliptical Crack b/ a = 0.6

3

=

=z

£ 2 4

L

=

=]

N

- )

=

>
1 -4
o} v
0.2 .0

Tensile Load o,/ 0y

Fig. 7. Growth of vield vone width vs increasing tensile load.
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Elliptical Crack b / a = 0.4

3
£
h-
3 24
v
-
S
N
3 8=0
>
14
0 = n/2
0 M T v T v T \
0.2 0.4 0.6 0.8 1.0

Tensile Load CGo / Oy

Fig. 8. Growth of yicld zone width vs increasing tensile load.
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APPENDIX

For mode | crack problems. the singular part of the kernel has the form

it | i 1

et = Ah
-0 T az(l= R ‘
N

K'(v.x,) = . - o
(v =) (v —1)0)

In this appendix we give the formulae to caleulate the denvatives of the fimite purt integral with respect to
the positions of the collocation point and the nodal points. The fnite part integral is in the form:

. l
ZFP | dad. A
I=F JR_ (A)

where the intgration is over the triangular clement of nodes v v and vy with collocation point at v, By choosing
a local (n. §) coordinate with the origin at v, and the # axis parallel to vy, Lin and Keer (1987) have shown

that
PN ) l( . ) A
- - A}
Sk S\ B
where
T AV Y A JRERTE 1/ FUR B 1Y (IR
The local coordinate (1, &) of the ith node 1s related to the global coordimate (v, 1)) through
i, AN g eos U (3, - vg) sin (A
o= ow{n v sind (- gy eos (A
where
. Vo
sinf) = el (A6)
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y— X,

cosf) = . . (A7)
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The dertvatives of £ with respect to v, v, v, and v, have the form:
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Inthe aboveequations | 7' 7, | ;md arecileulated trom (A = (ATywhereas (. and | -arcastollows:
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Solution of crack growth problems—I
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